
1                                                              IEEE ASSCC 2025/ Session X/ Paper X.Y                                                                      

A 28nm 244.45TOPS/W Winograd-Standard Fusion 

accelerator with Symmetric Hybrid Domain CIM Groups 

for Edge AI devices 

An Guo1#, Zhichao Liu1#, Wentao Zheng1, Yutong Zhang1, Tianhui 
Jiao1, Fangyuan Dong1, Mingzi Wang2, Shaochen Li1, Zhican Zhang1, 
Yuhui Shi1, Xing Wang1, Xin Si1, Xin Wang2*, Wenwu Zhu2*

 

1Southeast University, Nanjing, China, 2Tsinghua University, Beijing, 
China 

Email: xin_wang@tsinghua.edu.cn/, wwzhu@ tsinghua.edu.cn/ 
 #Equally contributed authors          *Corresponding authors 

The rapid advancement of AI technologies has garnered widespread 
attention, but the substantial power consumption of sophisticated AI 
models presents a significant challenge. Various AI accelerators [1-
10] have been developed to optimize energy efficiency for AI tasks. 
Winograd Convolution, as a CNN accelerating method, can save 
more than 2.25 times operations, as illustrated in Fig.1. This method 
involves four steps: (1) Winograd-domain (WD) weights 
transformation to W' using the G matrix; (2) WD features 
transformation to F' using the B matrix; (3) Hadamard production 
between W' and F' to obtain WD results Y'; and (4) Inverse WD 
transformation into final neural network results Y. Winograd 
Convolution typically employs multiple transform sizes, such as (2,3), 
(4,3), (6,3), where the numbers represent output and input tile sizes 
(OTS and ITS) respectively. Larger OTS yields more operation 
savings but increases accuracy loss, with OTS >4 leading to task 
failure in YOLO inference tests. Given the additional memory 
requirements of Winograd convolution, CIM emerges as a promising 
solution to efficiently implement this algorithm. This work proposes a 
Winograd AI accelerator with symmetric digital-analog hybrid domain 
CIM groups addressing: (1) Winograd's limitation to stride-1 layers, 
as decomposition algorithms for stride-2 CONV lead to large 
redundant calculations; (2) Significant storage and access overhead 
in WD weights; and (3) Complex Winograd operations, including 
GWGT, BTFB, Hadamard production and ATY'A. A 28nm fabricated 
Winograd/standard fusion AI accelerator achieves an INT8 energy 
efficiency of 79.9TOPS/W and a mean average precision (mAP) of 
57.88% with retraining for YOLOv8 with Winograd CONV.  

Fig. 2 illustrates the architecture of the proposed Winograd and 
standard convolution fusion (WSF) hybrid CIM chip, featuring: (1) a 
WSF CNN CIM architecture for edge image and video processing; 
(2) a Left Feature Parallel, Right Feature Serial Adder (LFp-RFsA) 
and WSF-digital-to-macro buffer (WSF-D2MB) based pre-macro 
processor for input stationary flow; (3) a bit-configurable digital-
analog hybrid domain CIM with symmetric structure (S-hybrid CIM); 
and (4) a Winograd-advanced-calculation standard-ordinary-
accumulation (WaC-SoA) based post-macro processor. The WSF 
chip comprises a main control, IO, Input preprocessor, 568Kb global 
buffer, SIMD core for nonlinear functions, WSF mode controller, 
ReLU early termination, and WSF core. Winograd calculations are 
divided into four parts: (1) F' = BTFB, computed in the LFp-RFsA pre-
macro processor, where input data is split into LFp- and RFs-groups, 
processed in parallel and bit-serial over 128 cycles respectively, with 
WSF-D2MB using paired DFFs for pipeline input scheduling; (2) 
W'=GTWG, calculated offline for multi-time reuse; (3) Y' = F'⊙W', 
executed in 4 symmetric-hybrid CIMs capable of INT2/4/8 mode 
operations, solving 128-ichs MAC operations; and (4) Y = ATY'A, 
processed in the WaC-SoA aggregator, computing ATY' and half of 
Y'A in advance to accelerate post-macro processing. Final results 
are sent to an output buffer for subsequent ReLU and other nonlinear 
functions. 

Fig. 3 illustrates the proposed LFp-RFsA and WSF-D2MB pre-macro 
processor, which operates in two modes: Winograd and standard 
convolution. In Winograd mode, input data undergoes BTFB 
transformation, allowing multi-position input sharing. The process is 
divided into two parts, calculated alternately. Each part shares 4 of 
12 inputs between left- and right-groups, with different input rows 
directed to 4 S-hybrid CIM macros. The LFp-RFs scheduler manages 
left-groups using 2 8b individual and 2 8b shared inputs for one LFp-
adder per macro, while right-groups use 8×2 1b individual and 8×2 
1b shared inputs for 8 RFs-adders per macro. LFp-adders perform 4 

8b accumulations or subtractions per cycle, producing 8b macro 
input data stored in a temporary storage (TS) buffer. RFs-adders 
calculate 4 1b operations per cycle, with 8 adders introduced to 
maximize utilization of CIM macros' 1b feature and 8b weight MAC 
capabilities for 16-ochs in 16 cycles. RFs-adder results are stored in 
TS buffers with 3b carry bit storage DFF and 1b extra DFF for the 
last 1b PSUM. To address carry-in issues, RFsAs operate two cycles 
earlier in the Winograd BTFB pipeline pre-macro flow. In standard 
convolution mode, inputs from different ochs are divided into left- and 
right-groups, with left features scanned from high to low bits and right 
features from low to high. These inputs bypass LFp-RFsA and WSF-
D2MB, proceeding directly to S-hybrid CIM macros. 

Fig. 4 illustrates the proposed symmetric hybrid CIM macro, 
comprising an INDRV, WL driver, key switch driver, IO, multi-level 
accumulator, main and CIM controllers, and 8 128×32 banks. Each 
bank processes 128 1b and 8b MAC operations for 2 output channels 
(ochs), one in analog and one in digital domain. The macro employs 
an input-stationary inner-macro data flow, maximizing input 
utilization through local weight switching. The left side of the figure 
details the computing units, where upcells and downcells connect to 
digital computing units (DCU) and analog computing units (ACU), 
controlled by K0. Different banks are managed by distinct Kns, as 
shown in the top right. The 8b vertical cut example operates in 8 
steps: (1) With K0-6=0 and K7=1, left features input highest bits and 
right features input lowest bits. Left features and upcells compute 
digitally, except for the lowest bit in analog, while right features and 
downcells compute in analog, except for the highest bit in digital. This 
process repeats for 16 cycles, switching local weights for 16 ochs. 
(2) K0-5=0 and K6-7=1, inputting MSB-1 for left features and LSB+1 
for right features. Left features and upcells compute digitally except 
for the lowest 2 bits in analog, and right features and downcells 
compute in analog except for the highest two bits in digital. (3) Similar 
operations as (1-2) continue with Kn and left-right feature switches, 
completing the 8-step process for full 8b computation. 

Fig.5 top illustrates the proposed WaC-SoA post-macro processor, 
utilizing S-hybrid CIM macro in INT4/8 mode. The S-hybrid CIM 
macro incorporates two multi-level accumulators, generating two 128 
1b feature and 4b weight PSUMs, which are processed by distinct 
Winograd advanced ATY'A processors. Each WaC processor 
divides calculations into top- and bottom- A matrix multiplications, 
computing ATY'& top of Y'A initially and ATY'& bottom of Y'A 
subsequently, with shared input data. In INT8 mode, post-WaC 
processor PSUMs undergo shift-and-add operations to produce final 
INT8 results. Fig.5 bottom showcases performance improvements: 
the LFp-RFs pre-macro processor achieves 64x adders, 1.79x power, 
and 4.59x area savings, while the WaC-SoA Aggregator post-macro 
processor realizes 1.50x power reduction and 3.04x speed increase. 
The CIM macro achieves an area efficiency of 
840.9GOPS/mm2@0.9V and an energy efficiency of 
79.88TOPS/W@0.6V. Three hybrid domain CIM structures - 
lightning-like (LLS) [5], vertical-cut (VCS) [6], and symmetric - were 
evaluated using 1000 random vectors with identical digital and 
analog circuits, resulting in 2-8x RC overhead with maximum 4.01% 
accuracy loss. In the WSF chip, pre-, inner-, and post-macro 
components consume 7.3%, 20.5%, and 72.2% of power and 10.7%, 
17.6%, and 71.7% of area, respectively, while conducting 4.2%, 
8.2%, and 87.6% of operations. The additional operations in pre- and 
post-macros are attributed to BTFB and ATY'A computations. 

Fig.6 displays the measured shmoo plot of the proposed WSF-chip, 
along with measured results on VGG16, ResNet18, and Yolov8, and 
a comparison table with previous work. The chip achieves 
620MHz@0.9V and 165MHz@0.6V, with an energy efficiency of 
45.46-243.62TOPS/W. Fig.7 presents the die photo and chip 
summary of the fabricated 28nm CMOS technology Winograd-
standard CNN fusion Hybrid CIM accelerator. Proposed chip 
features a core area of 0.9mm2 with four 0.11mm2 hybrid CIM 
macros, achieving an energy efficiency of 62.93-244.45 TOPS/W 
@INT4 precision and 14.85-57.68 TOPS/W @INT8 precision. 
Additionally, it demonstrates an inference accuracy of 70.72% on 
ResNet-18@ImageNet and a mean average precision (mAP) of 
57.88% on Yolov8@COCO. 
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Fig. 1. Design challenges of Winograd CIM accelerator. 

 
Fig. 2. Overall system architecture of proposed Winograd-Standard 
convolution fusion CIM accelerator. 

 
Fig. 3. Proposed LFp-RFsA and WSF-D2MB pre-macro processor. 

 
Fig. 4. Proposed symmetric hybrid CIM macro. 

 
Fig. 5. Proposed WaC-SoA post-macro processor and performance 
improvements. 

 
Fig. 6. Measurement results and performance comparison table. 
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Peak performance(TOPS) 9.63(INT4) 0.89/3.55 0.46 16.5 1.152

System energy efficiency

(TOPS/W)
12.8-75 12.1-101.1 3.33-4.98 16.3-23.2 14.85-244.45

System area efficiency

(TOPS/mm2)
0.361-2.12 0.062/0.247 0.059 12.0 0.129-1.94

Macro energy efficiency

(TOPS/W)
68.7-403 - - - 20.57-341.01

Macro area efficiency

(TOPS/mm2)
- 0.06/0.25 - - 0.235-3.364
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Fig. 7. Die photo and chip summary table. 
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Macro

#0

Macro

#1

Macro

#2

Macro

#3

CHIP SUMMARY

Technology 28nm CMOS

Core area 1.2×0.75=0.9 mm2

CIM Macro Area 4×0.330×0.353 mm2

Supply voltage(V) 0.6-0.9

Frequency 165-620MHz

CIM size 4×32Kb

SRAM size 568Kb

CIM memory density(Kb/mm2) 90.65

Peak performance(TOPS) 1.152

Precision(bit) INT 4 INT 8

System energy efficiency1

(TOPS/W)
62.93-244.45 14.85-57.68

Macro energy efficiency1

(TOPS/W)
93.18-341.01 20.57-79.9

System area efficiency2

(TOPS/mm2)
0.516-1.94 0.129-0.485

Macro area efficiency2

(TOPS/mm2)
0.94-3.364 0.235-0.841

Neural 

network 

index of 

different 

AI tasks

Inference accuracy3

(ResNet-18

@ImageNet)

70.72%

(16, 4 of total 20 layers 

using Winograd INT8 and 

Standard INT8 convolution)

mAP4

(Yolov8@COCO)

57.88%

(32, 32 of total 64 CONV 

layers using Winograd INT8 

and Standard INT8 

convolution)

1High point: test using Yolov8@COCO under

0.6V at 165MHz; low point: test using

Yolov8@COCO under 0.9V at 650MHz.
2High point: test under 0.9V; low point: test

under 0.6V.
3Using ResNet-18 model and the software

baseline is 71.27%.
4Using Yolov8 model and the software baseline

is 57.94%.
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